4,864 research outputs found

    Are Dark Energy and Dark Matter Different Aspects of the Same Physical Process?

    Get PDF
    It is suggested that the apparently disparate cosmological phenomena attributed to so-called 'dark matter' and 'dark energy' arise from the same fundamental physical process: the emergence, from the quantum level, of spacetime itself. This creation of spacetime results in metric expansion around mass points in addition to the usual curvature due to stress-energy sources of the gravitational field. A recent modification of Einstein's theory of general relativity by Chadwick, Hodgkinson, and McDonald incorporating spacetime expansion around mass points, which accounts well for the observed galactic rotation curves, is adduced in support of the proposal. Recent observational evidence corroborates a prediction of the model that the apparent amount of 'dark matter' increases with the age of the universe. In addition, the proposal leads to the same result for the small but nonvanishing cosmological constant, related to 'dark energy, as that of the causet model of Sorkin et al.Comment: Some typos corrected. Comments welcome, pro or co

    The computational complexity of Kauffman nets and the P versus NP problem

    Full text link
    Complexity theory as practiced by physicists and computational complexity theory as practiced by computer scientists both characterize how difficult it is to solve complex problems. Here it is shown that the parameters of a specific model can be adjusted so that the problem of finding its global energy minimum is extremely sensitive to small changes in the problem statement. This result has implications not only for studies of the physics of random systems but may also lead to new strategies for resolving the well-known P versus NP question in computational complexity theory.Comment: 4 pages, no figure

    The Number of Different Binary Functions Generated by NK-Kauffman Networks and the Emergence of Genetic Robustness

    Full text link
    We determine the average number ϑ(N,K) \vartheta (N, K) , of \textit{NK}-Kauffman networks that give rise to the same binary function. We show that, for N1 N \gg 1 , there exists a connectivity critical value Kc K_c such that ϑ(N,K)eϕN \vartheta(N,K) \approx e^{\phi N} (ϕ>0 \phi > 0 ) for K<Kc K < K_c and ϑ(N,K)1\vartheta(N,K) \approx 1 for K>Kc K > K_c . We find that Kc K_c is not a constant, but scales very slowly with N N , as Kclog2log2(2N/ln2) K_c \approx \log_2 \log_2 (2N / \ln 2) . The problem of genetic robustness emerges as a statistical property of the ensemble of \textit{NK}-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.Comment: 4 figures 18 page

    Gonadotropin and kisspeptin gene expression, but not GnRH, are impaired in cFOS deficient mice.

    Get PDF
    cFOS is a pleiotropic transcription factor, which binds to the AP1 site in the promoter of target genes. In the pituitary gonadotropes, cFOS mediates induction of FSHβ and GnRH receptor genes. Herein, we analyzed reproductive function in the cFOS-deficient mice to determine its role in vivo. In the pituitary cFOS is necessary for gonadotropin subunit expression, while TSHβ is unaffected. Additionally, cFOS null animals have the same sex-steroid levels, although gametogenesis is impeded. In the brain, cFOS is not necessary for GnRH neuronal migration, axon targeting, cell number, or mRNA levels. Conversely, cFOS nulls, particularly females, have decreased Kiss1 neuron numbers and lower Kiss1 mRNA levels. Collectively, our novel findings suggest that cFOS plays a cell-specific role at multiple levels of the hypothalamic-pituitary-gonadal axis, affecting gonadotropes but not thyrotropes in the pituitary, and kisspeptin neurons but not GnRH neurons in the hypothalamus, thereby contributing to the overall control of reproduction

    Teleportation, Braid Group and Temperley--Lieb Algebra

    Full text link
    We explore algebraic and topological structures underlying the quantum teleportation phenomena by applying the braid group and Temperley--Lieb algebra. We realize the braid teleportation configuration, teleportation swapping and virtual braid representation in the standard description of the teleportation. We devise diagrammatic rules for quantum circuits involving maximally entangled states and apply them to three sorts of descriptions of the teleportation: the transfer operator, quantum measurements and characteristic equations, and further propose the Temperley--Lieb algebra under local unitary transformations to be a mathematical structure underlying the teleportation. We compare our diagrammatical approach with two known recipes to the quantum information flow: the teleportation topology and strongly compact closed category, in order to explain our diagrammatic rules to be a natural diagrammatic language for the teleportation.Comment: 33 pages, 19 figures, latex. The present article is a short version of the preprint, quant-ph/0601050, which includes details of calculation, more topics such as topological diagrammatical operations and entanglement swapping, and calls the Temperley--Lieb category for the collection of all the Temperley--Lieb algebra with physical operations like local unitary transformation

    Graph Invariants of Vassiliev Type and Application to 4D Quantum Gravity

    Full text link
    We consider a special class of Kauffman's graph invariants of rigid vertex isotopy (graph invariants of Vassiliev type). They are given by a functor from a category of colored and oriented graphs embedded into a 3-space to a category of representations of the quasi-triangular ribbon Hopf algebra Uq(sl(2,C))U_q(sl(2,\bf C)). Coefficients in expansions of them with respect to xx (q=exq=e^x) are known as the Vassiliev invariants of finite type. In the present paper, we construct two types of tangle operators of vertices. One of them corresponds to a Casimir operator insertion at a transverse double point of Wilson loops. This paper proposes a non-perturbative generalization of Kauffman's recent result based on a perturbative analysis of the Chern-Simons quantum field theory. As a result, a quantum group analog of Penrose's spin network is established taking into account of the orientation. We also deal with the 4-dimensional canonical quantum gravity of Ashtekar. It is verified that the graph invariants of Vassiliev type are compatible with constraints of the quantum gravity in the loop space representation of Rovelli and Smolin.Comment: 34 pages, AMS-LaTeX, no figures,The proof of thm.5.1 has been improve

    Production of a Higgs pseudoscalar plus two jets in hadronic collisions

    Get PDF
    We consider the production of a Higgs pseudoscalar accompanied by two jets in hadronic collisions. We work in the limit that the top quark is much heavier than the Higgs pseudoscalar and use an effective Lagrangian for the interactions of gluons with the pseudoscalar. We compute the amplitudes involving: 1) four gluons and the pseudoscalar, 2) two quarks, two gluons and the pseudoscalar and 3) four quarks and the pseudoscalar. We find that the pseudoscalar amplitudes are nearly identical to those for the scalar case, the only differences being the overall size and the relative signs between terms. We present numerical cross sections for proton-proton collisions with center-of-mass energy 14 TeV.Comment: 12 pages, LaTeX, 4 Postscript figures, submitted to Phys. Rev.

    Unanimity Rule on networks

    Get PDF
    We introduce a model for innovation-, evolution- and opinion dynamics whose spreading is dictated by unanimity rules, i.e. a node will change its (binary) state only if all of its neighbours have the same corresponding state. It is shown that a transition takes place depending on the initial condition of the problem. In particular, a critical number of initially activated nodes is needed so that the whole system gets activated in the long-time limit. The influence of the degree distribution of the nodes is naturally taken into account. For simple network topologies we solve the model analytically, the cases of random, small-world and scale-free are studied in detail.Comment: 7 pages 4 fig

    Self-organized Networks of Competing Boolean Agents

    Full text link
    A model of Boolean agents competing in a market is presented where each agent bases his action on information obtained from a small group of other agents. The agents play a competitive game that rewards those in the minority. After a long time interval, the poorest player's strategy is changed randomly, and the process is repeated. Eventually the network evolves to a stationary but intermittent state where random mutation of the worst strategy can change the behavior of the entire network, often causing a switch in the dynamics between attractors of vastly different lengths.Comment: 4 pages, 3 included figures. Some text revision and one new figure added. To appear in PR

    Self-Reduction Rate of a Microtubule

    Full text link
    We formulate and study a quantum field theory of a microtubule, a basic element of living cells. Following the quantum theory of consciousness by Hameroff and Penrose, we let the system to reduce to one of the classical states without measurement if certain conditions are satisfied(self-reductions), and calculate the self-reduction time τN\tau_N (the mean interval between two successive self-reductions) of a cluster consisting of more than NN neighboring tubulins (basic units composing a microtubule). τN\tau_N is interpreted there as an instance of the stream of consciousness. We analyze the dependence of τN\tau_N upon NN and the initial conditions, etc. For relatively large electron hopping amplitude, τN\tau_N obeys a power law τNNb\tau_N \sim N^b, which can be explained by the percolation theory. For sufficiently small values of the electron hopping amplitude, τN\tau_N obeys an exponential law, τNexp(cN)\tau_N \sim \exp(c' N). By using this law, we estimate the condition for τN\tau_N to take realistic values τN\tau_N \raisebox{-0.5ex}{>\stackrel{>}{\sim}} 10110^{-1} sec as NN \raisebox{-0.5ex} {>\stackrel{>}{\sim}} 1000.Comment: 7 pages, 9 figures, Extended versio
    corecore